
Carnegie Mellon
Software Engineering Institute

MAP and OAR Methods:
Techniques for Developing Core
Assets for Software Product
Lines from Existing Assets

Liam O'Brien
Dennis Smith

April 2002

Product Line Practice Initiative

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2002-TN-007

20020724 203

Carneqie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief age veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the Judgment of the
Carneqie Mellon Human Relations Commission, the Department of Defense policy of "Don't ask, don't tell, don't pursue" excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are

available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue Pittsburgh PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone

(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Note
CMU/SEI-2002-TN-007

MAP and OAR Methods:
Techniques for Developing Core
Assets for Software Product
Lines from Existing Assets

Liam O'Brien
Dennis Smith

April 2002

Product Line Practice Initiative

Unlimited distribution subject to the copyright.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2002 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

Abstract vii

1 Introduction 1

2 Role of the MAP and OAR Methods in Applying the Product Parts
Pattern 3

3 The MAP and OAR Methods 5
3.1 The MAP Method 5

3.1.1 Details of the MAP Method 6
3.2 The OAR Method 7

3.2.1 Overview of OAR Activities 7

4 An Example Use of the MAP and OAR Methods 10
4.1 Scenario 10

4.2 Solution Using the MAP Method 10

4.3 Results of Applying the MAP Method in the Example 11

4.3.1 Component View 11
4.3.2 Architectural Styles and Attributes 12
4.3.3 Execution View 13
4.3.4 Data-Flow View 14
4.3.5 Analysis of Styles and Attributes 15

4.4 Extended Example Showing the OAR Method 15
4.4.1 Results of Applying the OAR Method to the Example

Scenario 16

5 Conclusion 19

References 21

CMU/SEI-2002-TN-007

CMU/SEI-2002-TN-007

List of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

The Product Parts Pattern 3
Steps in the MAP Method 7
Overview of OAR Activities 8
Feedback Process-Control Environment 10
Calls Relations in Product P1 12
Styles and Attributes of Products P1, P2, and P3 13
Blackboard Environment of Products P1, P2, and P3 14

CMU/SEI-2002-TN-007

iv CMU/SEI-2002-TN-007

List of Tables

Table 1: Component Table 16
Table 2: Options Table 18

CMU/SEI-2002-TN-007

vi CMU/SEI-2002-TN-007

Abstract

While it is commonly recognized that legacy assets are, in most cases, an important
contributor to the core assets for software product lines, systematic methods for making
decisions on when to incorporate legacy assets (versus building new assets) have not been
available. Two methods developed by the Software Engineering Institute fill this gap: the
Mining Architectures for Product Lines (MAP) method and the Options Analysis for
Reengineering (OAR) method.

Both of these methods, which are described in this report, support different aspects of the
Product Parts Pattern, which is applied to develop the core assets for a product line. The MAP
method provides a suitability analysis of existing systems'software architectures as
candidates for a product line architecture. After an architecture has been developed or chosen,
the OAR method provides a disciplined approach for making decisions on rehabilitating
legacy assets that may be incorporated into the product line asset base.

This technical note describes both the MAP and OAR methods, the activities that each
involves, and examples of applying them.

CMU/SEI-2002-TN-007 vij

Vjjj CMU/SEI-2002-TN-007

1 Introduction

Software product lines' have delivered substantial improvements in productivity and quality,
as well as savings in cost and time to market. Clements and Northrop [Clements 01] present a
software product line framework that identifies 29 essential practice areas that are required to

successfully implement a product line.

In addition, Clements and Northrop apply the concept of patterns to help organizations decide
which groupings of practice areas to apply in specific situations. Patterns are a way of
expressing common contexts and problem/solution sets. When used in a product line context,
patterns identify common problems that organizations encounter in implementing product
lines and a set of practice areas and the relations between them, which will enable the
organization to address the problem. This enables an organization to quickly focus on the
practices that are required for the task at hand.

One of these patterns, the Product Parts Pattern, is applied to develop the core assets for a
product line. In developing core assets, it is often desirable to mine assets from existing
systems. However, it is difficult to make informed decisions on the relevance of existing
assets and the types of changes that would be required to make them suitable for inclusion in
the product line asset base.

This technical note focuses on two methods developed by the Software Engineering Institute
(SEI) that can be used to support the application of the Product Parts Pattern in making
decisions about using existing assets as potential core assets for product lines. The Mining
Architectures for Product Lines (MAP) method addresses assets at the architecture level
[O'Brien 01],2 while the Options Analysis for Reengineering (OAR) method addresses assets
at the component level [Bergey 01].

Section 2 of this document describes the role of the MAP and OAR methods within the
Product Parts Pattern. Section 3 describes the MAP and OAR methods. Section 4 summarizes

i A software product line is set of software-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way [Clements 01].

2 The MAP method can also be used to support other product line patterns. For example, in the What
to Build Pattern, there is a need to determine the commonalities among existing products so you
can decide which products to include in the product line. Also, in the Forced March Pattern, a
similar understanding of an organization's existing systems is required to distill out the
commonalities and variations. These uses of the MAP method are not explored in this technical
note.

CMU/SEI-2002-TN-007 1

an example in which the MAP and OAR methods are used together. Section 5 provides

conclusions and suggests possible next steps.

CMU/SEI-2002-TN-007

2 Role of the MAP and OAR Methods in Applying

the Product Parts Pattern

In developing a product line, a number of core assets are required including the product line
requirements, architecture, components, and testing artifacts. These assets can be built from
scratch, bought or contracted for, or mined from existing assets. The Product Parts Pattern
suggests how to use the practice areas and other patterns in developing or acquiring these
assets. Figure 1 illustrates what practice areas work together in the Product Parts Pattern to

develop the core assets.

1 Informs

Data Flow

Each Asset
Requirements

Each Asset •*-

i' Architecture

Make/Buy/Mine/Commission Analysis

Architecture
Evaluation

* Farh Mining r ' Developing
A^Ut Existing ,,tn;,ot7™ an Acquisition

compo„^s
Se^---_A^-^^^^Strqategy

Software
Systems
Integration

Each Asset
Testing

Figure 1: The Product Parts Pattern

As shown in Figure 1, the product line requirements drive the product line architecture and
component definition. The Each Asset Pattern for architecture delivers the product line
architecture that specifies the components. In performing an Each Asset analysis for
architecture, it is often relevant to analyze the role that existing architectures may play in
satisfying the needs for variability and commonality that are required for the product line.

The MAP method [O'Brien 01] analyzes the architectures of existing systems and the
commonalities and variabilities across these architectures. It determines whether a product
line is feasible and whether some of the knowledge already gained from the analysis can be

CMU/SEI-2002-TN-007

reused. The MAP method can be used to analyze multiple systems to understand their
architectures. Because the MAP method performs an analysis of the existing systems,
including the identification of existing components, it also provides information on where to

look for legacy components.

After an architecture is selected or developed, components need to be developed to
implement the product line's architecture. Figure 1 shows that the
"Make/Buy/Mine/Commission" practice area determines whether these components will be

built, purchased, mined, or commissioned.

The Make/Buy/Mine/Commission analysis determines how individual assets come to be. As

a result of the MAP method, the organization will have knowledge of the existing
components. This knowledge can be used as input to choosing the asset-sourcing approach.

Once these decisions are made, other technical practice areas and patterns are used to develop

the assets, mine them, acquire commercial off-the-shelf (COTS) assets, or create or

commission the assets.

If the components are to be mined from one or more existing systems, the "Mining Existing
Assets" practice area will be required. You must know which assets are appropriate for
mining, how to rehabilitate them, and how much the changes will cost. The OAR method
provides a disciplined approach for making detailed technical decisions in support of the
"Mining Existing Assets" practice area, such as whether it is feasible to mine certain

components.

To demonstrate how the MAP and OAR methods fill a role in the Product Parts Pattern, each
is described briefly in Section 3. Section 4 outlines a product line scenario and summarizes
how the MAP and OAR methods could be used to support the scenario. The results are then
related to other practice areas within the Product Parts Pattern.

CMU/SEI-2002-TN-007

3 The MAP and OAR Methods

This section gives an overview of the MAP and OAR methods and describes the activities
involved in each one.

3.1 The MAP Method
As mentioned earlier, the goal of the Product Parts Pattern is to develop core assets for a
product line. An existing software architecture can provide strong leverage if it can evolve to
be the product line architecture, or if parts of the architectures of existing systems can be
reused in the development of the product line architecture. However, many existing software
architectures were not originally constructed to be reused in the development of multiple
products; they do not have robust variation mechanisms to address needed variability in the
required features and quality attributes. In addition, most current architectures don't have
enough documentation to determine whether and how they may be suitable. An analysis is
necessary to determine the usefulness of the legacy architectures.

The MAP method [O'Brien 01] provides such analysis. It determines whether the
architectures are similar and whether the corresponding systems have the potential of
becoming a software product line. These systems can be from the same domain, such as
engine controller, or from similar domains, such as window lifter and sunroof.

The MAP method analyzes the architectural styles and attributes of a set of systems. This
analysis determines if there are similar components and connections between the components
within these systems and examines their commonalities and variabilities. It combines
techniques for architecture reconstruction (extracting information from the source code and
building architectural views of the system) and product line analysis (examining the quality
attributes and determining their commonalities and variabilities).

The MAP method provides a detailed understanding of the architectures and components of a
set of existing products. It may be possible to reuse parts of the architecture when developing
the product line architecture. Identifying the set of components within these systems can also
assist in the mining process (discussed in Section 4.4).

CMU/SEI-2002-TN-007

3.1.1 Details of the MAP Method
The MAP method involves the following six steps, which are illustrated in Figure 2:

1. Preparation—identifying the organizational and technical issues (such as the motivations
for moving to a product line approach and the people who are available to assist in the
analysis effort) and selecting the candidate systems to be analyzed. These systems
should be representative of the overall set of systems from which the organization wants
to create a product line. And these systems may be from the same domain or related
domains as noted above.

2. Extraction—extracting information from the source code of each system and putting it
into a database for further manipulation. This information consists of a set of elements
(functions, files, variables, etc.) and relations between these elements (calls,
uses_variable, etc.). Along with the static information from the source code, dynamic
information (such as the actual set of functions called or dynamic configuration details)
may be used if available. In many cases, it is not. Kazman and associates discuss this in
more depth [Kazman 01].

3. Composition—establishing several component views of the system. Abstracting the
source information to identify components and the relationships among them generates
these views. This is the key step for capturing candidate structures for the commonality
and variability evaluation.

4. Qualification—mapping known architectural styles and quality attributes (performance,
safety, etc.) to the system and its components

5. Evaluation—evaluating the candidate architectures and systems to determine their
commonalities, variabilities, and other attributes. Evaluations could involve

• analyzing customer- and system-specific features

• variation points in customer features, protocols, operating systems, and
hardware

• domain vocabulary, such as vocabularies for requirements, design, and
implementation; and specialized vocabularies, such as customer-specific
terminology

• product evolution, such as the evolution of a system from an autonomous
system to a network device

• quality attributes, such as safety, performance, and timing constraints
6. Follow-on—recommending next steps and follow-up activities

The outputs of applying the MAP method make up a detailed analysis of the architectures of
several systems and identify their commonalities, variabilities, and other quality attributes.
This information can lead to the development of a product line architecture for these systems.

CMU/SEI-2002-TN-007

Preparation

H Product Candidates

For Each Candidate

Extraction
 T_

Qualification . Composition

V7
Components, Views,
Styles, and Attributes

Evaluation

Commonalities and
Variabilities

V
Follow-on

Figure 2: Steps in the MAP Method

3.2 The OAR Method
Referring back to Figure 1 and the Product Parts Pattern, a product line architecture must be
populated with components. The Make/Buy/Mine/Commission analysis is used to decide
how to get the product line assets, including the components. The OAR method can be used
to inform this analysis. In addition, if mining is selected, the OAR method can be used to
identify potential reusable components (to satisfy the component needs defined in the
architecture) and to analyze the changes that would be needed to rehabilitate them for the
product line. The OAR method identifies mining options, and the cost, effort, and risks
associated with each one.

Because of the difficulty of identifying potential components to mine, projects have often
deferred mining decisions indefinitely or gone to an "all or nothing" approach. The lack of
discrimination based on sound decision criteria is surely not good business practice, let alone
good product line practice. The OAR method addresses this problem by establishing a more
formalized approach to making decisions about mining software components.

3.2.1 Overview of OAR Activities

As shown in Figure 3, the OAR method consists of five major activities with tasks that can be
scaled to analyze a small number (15-20) or a much larger number of components.

CMU/SEI-2002-TN-007

' Perform
Specialized

Task(s) l.y

Establish
Mining
Context

O

' Perform -
Specialized

s Task(s) y

Inventory
Components

Specialized
\^Task(s) ,/

Analyze
Cy1 Candidate

Components

/ Perform \
I Specialized }
V Task(s) ,/'

Context-Driven Activities

Key
Activity

'S) -) Task
Specialized

.*?
Information
Flow

Figure 3: Overview of OAR Activities

Each activity, described below, has a set of tasks and subtasks that enables it to meet its goals.

3.2.1.1 Establish Mining Context Activity

The Establish Mining Context activity establishes an understanding of the organization's
product line or new single-system needs, legacy base, and expectations for mining legacy
components. This activity develops a baseline of the goals and expectations (such as what the
organization hopes to achieve from mining assets and how doing so relates to other product
line activities) for the mining project and the component needs that mining will address. It
also determines the programmatic and technical drivers for making decisions, reviews legacy
systems and documentation, and selects a set of potential candidate components for mining.

3.2.1.2 Inventory Components Activity

The Inventory Components activity identifies the legacy system components that meet
product line needs and have the potential to be mined for use as product line components, but

that will require more detailed analysis.

In this activity, the characteristics of the product line components' needs are identified, such
as the programming language in which the components are implemented and the need for a
component to satisfy particular quality attributes. Legacy components are evaluated based on
these criteria; those that don't meet the criteria are screened out. This activity results in an
inventory of candidate legacy components that fulfill component needs.

CMU/SEI-2002-TN-007

3.2.1.3 Analyze Candidate Components Activity

The Analyze Candidate Components activity performs additional screening on the candidate
components and identifies the types of changes that are required to rehabilitate each one.

3.2.1.4 Plan Mining Options Activity

The Plan Mining Options activity performs a final screening of candidate components and
develops alternative options (aggregation/grouping of components) for mining, based on
schedule, cost, effort, risk, and resource considerations. This activity analyzes the impacts of
different aggregations in determining options.

3.2.1.5 Select Mining Option Activity

The Select Mining Option activity selects the mining option or combination of options that
can best satisfy the organization's goals by balancing programmatic and technical
considerations. Each mining option is evaluated. The optimal option or combination of
options is selected. A summary report and justification for the selected option is prepared.

CMU/SEI-2002-TN-007

4 An Example Use of the MAP and OAR Methods

4.1 Scenario
An automotive organization is considering the development of a software product line for the
software that controls some of its automotive systems.

The organization wants to analyze several of its legacy automotive systems to determine the
commonalities and variabilities across these systems and to determine whether, from a
technical viewpoint, it should undertake a software product line approach.

The legacy systems run in a small, embedded system that's characterized by a feedback
process-control environment. In this environment, the rotation of a motor moves an object,
such as a power window or sunroof, depending on a desired object position (see Figure 4). A
sensor provides pulses as a feedback to the process control.

4.2 Solution Using the MAP Method
Two similar domains, sunroof and window lifter, were selected for analysis. Two products
(PI, P2) were selected from the sunroof domain, and one product, P3, was selected from the
window-lifter domain. Due to the two domains' similarity, if the structure of product P3
could be mapped to products from other domains, the product line architecture could be
extended to include products from both domains and a broader range of potential products

than had been initially planned.

Desired

Position

Rotation

Figure 4: Feedback Process-Control Environment

The MAP method was used to identify whether the two products from the sunroof domain
have commonalities that would make it feasible to create a common product line architecture
for these products and to determine if the window-lifter product could also be moved to this
common architecture. The results of applying the MAP method are summarized below.

10 CMU/SEI-2002-TN-007

After the architecture has been designed, the OAR method can be used to determine if some
of the components in the existing systems can be reused as assets in the new product line.
The OAR method can be applied to assist the organization in making that determination. In
Section 4.4.1, the results of a possible application of the OAR method in this scenario are

outlined."

4.3 Results of Applying the MAP Method in the Example
In the Extraction step, a set of elements and relations were extracted from the source code
and loaded into the Dali Workbench [SEI 02]. A set of abstractions was applied to this
information to aggregate elements into components. Several views of the components
showing different relations were generated. By analyzing the views, it was possible to
identify the use of several known architectural styles within the software including the
blackboard style, the cyclic executive style, and some layering (though it was not strict).

After completing the Extraction, Composition, and Qualification steps, O'Brien and Stoermer
compared the different reconstructed architectures and evaluated them for their application to
a potential product line [O'Brien 01].

4.3.1 Component View

The commonalities and variabilities that are an important attribute of a product line
architecture are captured at a component level. Architectures that don't address
commonalities and variabilities are not suitable candidates for migration to a product line.

First, the component views were represented. Figure 5 illustrates one of the component views
for product PI. In this case, the view shows a set of components that has been aggregated
from a set of functions, variables, and files. The relation shown between the components is
the aggregation of the calls between functions in the components.

The analysis of the components' calls relations and interface and syntax semantics revealed
that products PI and P2 are similar from a structural perspective because

• They have almost the same set of components.

• Those components have very similar calls relations.

• Those components exhibit similar data usage.

On the other hand, product P3 has substantial structural differences from the other two
products. Although product P3 shares a number of the same components, it has a number of

3 The example using the MAP method reflects work that was performed on an automotive system.
The example using the OAR method is taken from an application of the OAR method in a different
domain that has been modified to support the automotive scenario and that represents a
hypothetical extension of the MAP example.

CMU/SEI-2002-TN-007 11

MAIN

Cl \ \

i \
,^V

C3

"~JC2

I

Ji—- -' / •' CONTROL
; *7 - |

'' /' \ -A""'/ N-- \ /C4
Key

/
/ ^.,-- '^ // <

1 ''/ n Component

/' _,...-
*t-^

// Aggregated
» 4 < ^ calls relations

CRH 1CA L USI
:

posmoN

additional unique components as well. Product P3 also has extra relationships between
components and a similar data usage within and across components.

Figure 5: Calls Relations in Product P1

4.3.2 Architectural Styles and Attributes

O'Brien and Stoermer also examined the architectural styles of the reconstructed systems to
determine whether they were similar enough to be combined in a common product line
architecture [O'Brien 01].

The styles and attributes used in all three products are illustrated in Figure 6.

The main architectural style used in products PI, P2, and P3 was a feedback process-control
style. Feedback process-control styles are used in reactive systems. Such systems are
confronted mostly with disparate, discrete events that require the systems to switch between
different behavior modes (e.g., between controlling motions and adjusting the base position).

In their report, O'Brien and Stoermer summarize the execution4 and data-flow5 views
because these views offered substantial input into the decision to migrate to a product line.
Other views, such as code or logical views, can be produced. However, O'Brien and

An execution view describes the dynamic structure of a system.
A data-flow view shows how data flows among the major software components in a system.

12 CMU/SEI-2002-TN-007

Stoermer found that the execution and data flow, along with other analysis, provided the
information needed to support the move to a product line.

»In;!

v State- Transition /Performance /
/ State \ V iew / /
I Machine / Safety /

' Functional View

>^ / Feedback \ Data-Flow View

(Process j

I;;»!;< Kxrhanw' A^ Control J

■w Communication
Key

1 Blackboard j
Kxejmtion

/ /

) Style

Functional View / /
Attributes

Data-Flow View
' Cyclic \

Execution View

Figure 6: Styles and Attributes of Products P1, P2, and PcP

4.3.3 Execution View

To establish the execution view, O'Brien and Stoermer asked the following questions:

• In which sequence are tasks executed?

• Are critical and less critical operations distinguished?

Figure 5 shows that the MAIN component calls all other components. By examining the
MAIN component's code (identified as the main function) and analyzing the calls from the
main function to functions in the other components, O'Brien and Stoermer found that the
MAIN component uses a cyclic executive style. And by analyzing that executive, they
identified three execution levels that are common for products PI, P2, and P3:

1. interrupt level

2. critical events level

3. less critical level

6 The label for the Communication circle in this figure is blank because it represents information
proprietary to the organization for which the MAP method was applied.

CMU/SEI-2002-TN-007 13

The cyclic executive handles the safety and performance attributes to give these critical
qualities the highest priority. By talking with the developers and maintainers and looking at
existing documentation, O'Brien and Stoermer obtained other information about these
products. For example, while all three systems use a cyclic executive, product P3 uses a
different timing approach in its executive.

4.3.4 Data-Flow View

The variables accessed in the implementation model showed the central position of the
Blackboard architecture style in each of the systems.

In a blackboard environment, there are typically no direct algorithmic solutions to a problem.
The problem has to be divided into several computational steps, each of which is a
knowledge source and which together form the solution through a set of rules.

The same blackboard environment, shown in Figure 7, is common in products PI, P2, and
P3. It occupies shared data space where a set of global variables is defined in several files and
used in various functions throughout the systems.

Blackboard

/ sync data

^ non-sync

/ states
^ variables

' 's

less critical

critical events

interrupt

i

cyclic executive

Key

cyclic executive
and data

exec functions

< ►

-► Executes

Accesses and
Sets

Figure 7: Blackboard Environment of Products P1, P2, and P3

14 CMU/SEI-2002-TN-007

4.3.5 Analysis of Styles and Attributes

Based on this evidence and other data they reported, O'Brien and Stoermer concluded that
the styles and attributes (e.g., timing requirements) of products PI and P2 are identical
[O'Brien 01]. Product P3 uses a similar blackboard style, and uses the cyclic executive style,
but has a different timing mechanism for the cyclic executive.

O'Brien and Stoermer also analyzed the variable names in terms of their generality and
potential usefulness for a product line. They found that

• The terminology used for variable and function names is predominantly at a physical
level (e.g., port_123 for speed).

• User activities are hardwired to a specific feature (e.g., button_500ms_pressed for
calibrate position). This makes decoupling certain customer requirements from system
features difficult.

Based on the results of the evaluation, they recommended the following:

• A migration towards a product line architecture for products in the sunroof domain makes
sense from an architectural point of view. There should be an attribute-driven design
(ADD) effort at the organization to fully define the product line architecture and to
transfer further products into a product line [Bachmann 00]. ADD is a method for
designing the software architecture of a product line to ensure that the resulting products
have the desired qualities. Parts of the existing products' architectures may be reused in
defining the product line architecture.

• Because of the similarities of architecture styles and comparable functionality, a
prototype effort based on the ADD method should investigate a common product line for
products in the sunroof and window-lifter domains.

Based on this analysis, a prototype product line architecture was implemented, and a
successful prototype system was developed that reused parts of the existing products'
architectures and some of their components. Thus, the MAP method provided important input
on making decisions for the reuse of existing architectures in support of the Product Parts
Pattern.

4.4 Extended Example Showing the OAR Method
To extend this example, we define a scenario where the organization decides to move towards
a product line and develop a product line architecture for the products in the sunroof domain.
The organization wants to determine if parts of the existing sunroof products can be reused to
satisfy the component needs of the new product line. The OAR method can be used to make
decisions on mining components. The following section outlines the results of such a
scenario.

CMU/SEI-2002-TN-007 15

4.4.1 Results of Applying the OAR Method to the Example Scenario

During the Establish Mining Context activity, a set of drivers for making decisions on
candidate components was established, including interface flexibility, the satisfaction of real-
time constraints, portability and interoperability, and the high level of code quality (i.e., high
cohesion, low coupling).

Four types of component needs for the new product line were selected for investigation
during the application of the OAR method:

1. clock

2. position determination

3. user interface

4. anti-trap capabilities

During the Inventory Components activity, six legacy system components were selected as

mining candidates to satisfy these needs. These components were selected by examining the
existing sunroof components and matching them to the product line component needs. The
selected components include two clocks (Clock-A and Clock-B), a position determination
(PTION), two user interfaces (UI-1 and UI-2, based on different customer configurations),
and an anti-trap subsystem (Anti-Trap).

During the Analyze Candidate Components activity, the identified components were analyzed
to evaluate their potential for use in the new architecture. As the analysis proceeds throughout
each activity, a Component Table is filled out, such as Table 1.

Legacy System
Software

Components

Black-Box /
White-Box
Suitability

Level
of

Changes

Support
Software
Required

Level
of

Diff

Level
of

Risk

Mining
Effort
(mm)'

Mining
Cost

New
Devel.

Effort (mm)

New
Devel.
Cost

Comp.2

Cost of
Mining

Comp.
Effort of
Mining

Clock-A
Clock-B

BB
BB

None
None

S&D Files3

S&D Files
1
1

Low
Low

0.1
0.1

$1,000
$1,000

7.7
16.3

$76,567
$162,567

1%
1%

1%
1%

PTION BB None S&D Files 1 Low 0.1 $1,000 14.0 $139,533 1% 1%

UI-1
UI-2

WB (minor)
WB (minor)

Minor (10%)
Minor (10%)

S&D Files
S&D Files

2
2

High
High

2.2
1.3

$22,000
$13,000

30.7
14.7

$306,733
$147,067

7%
9%

7%
9%

Anti-Trap WB (major) Major (50%) S&D Flies 4 Low 8 $80,000 18.1 $180,567 44% 44%

1 mm means man month
2 Comp. Means Comparative
3 S&D are Script and Data Files

12

•*—
$118,000 101

 TO

$1,013,033 12% 12%

Table 1: Component Table

16 CMU/SEI-2002-TN-007

Table 1 shows that three potential legacy components were identified for wrapping (the two
clocks and the position determination). These components would not require changes to their
internal programs. The other three components (the two user interface components and the
anti-trap subsystem) were identified as potential white-box components where changes inside
the programs would be required.

The components were analyzed and the basic types of changes required to rehabilitate these
components were identified. Cost and effort estimates were made for developing the
candidate components from scratch as opposed to mining them.

The activities up to and including the Analyze Candidate Components activity provided an
analysis of the effort required to rehabilitate individual components. The next activity,
Planning Mining Options, groups components to enable management decisions that can best
satisfy the organization's goals by balancing programmatic and technical considerations.

During the Planning Mining Options activity, three options containing aggregations of
components were developed. These options are summarized in Table 2. The three options
were

1. The clock and position determination components were aggregated as one option.
However, since these components depend on interfaces that are yet to be defined, this
aggregation may change.

2. The user interface components were grouped as an option.

3. The anti-trap subsystem had self-contained functionality and was treated as a
separate option.

The aggregated levels of difficulty and risk for each option were determined. The aggregated
level of difficulty is calculated as a weighted average of the individual component's difficulty
level. The level of risk for an aggregation is the highest level of risk for any of the individual
components within the option.

CMU/SEI-2002-TN-007 17

Option

No.

Legacy System

Software

Components

Support

Software

Required

Level

of

Risk

Level

of

Difficulty

Mining

Effort1

(mm)

Mining

Cost1

New

Development

Effort (mm)

New

Development

Cost

Comparative

Cost of

Mining

Comparative

Effort of

Mining

1 Anti-Trap S&D Files Low 4 8 $80,000 18.1 $180,567 44% 44%

Option Summation Low 4 8 $80,000 18.1 $180,567 44% 44%

2 UI-1

UI-2

S&D Files

S&D Files

High

High

2

2

2.2

1.3

$22,000

$13,000

30.7

14.7

$306,733

$147,067

7%

9%

7%

9%

Option Summation High 2 3.5 $35,000 45.4 $453,800 8% 8%

3 Clock-A

Clock-B

PTION

S&D Files

S&D Files

S&D Files

Low

Low

Low

1

1

1

0.1

0.1

0.1

$1,000

$1,000

$1,000

7.7

16.3

14

$76,567

$162,567

$139,533

1%

1%

1%

1%

1%

1%

Option Summation Low 1 0.3 $3,000 38 $378,667 1% 1%

1 kllnlrm C«ni4 on ist reauired to c invert the SUDD ort software's sea riDts and data 1 les.- ■■.:■■■■•'■;-.

Table 2: Options Table

During the next activity, Select Mining Option, the three options were prioritized, and each
was analyzed based on the organization's goals for the mining effort. The rest of Table 2 was

then filled out.

The results showed that the components should be mined according to all three options and
then be folded into the new product line. The OAR method thus provides an essential
analysis of the technical effort and resources required for the mining of existing assets in

support of the Product Parts Pattern.

18 CMU/SEI-2002-TN-007

5 Conclusion

While legacy assets need to be an important part of core assets for product lines, systematic

methods for deciding when to incorporate legacy assets have not been available. We have

shown how two methods, MAP and OAR, fill this gap.

Each method supports different aspects of the Product Parts Pattern, which is applied to
develop the core assets for a product line. Within the Each Asset Pattern for architecture, the
MAP method provides a suitability analysis of the existing systems' architectures as
candidates for a product line architecture. It also provides an analysis of multiple systems to

provide information about potential legacy components.

The OAR method provides a disciplined approach for deciding how to rehabilitate
components that may be inserted into a product line. It informs the
"Make/Buy/Mine/Commission Analysis" practice area and provides systematic support for

decision making in the "Mining Existing Assets" practice area.

Though the MAP and OAR methods have not yet been applied together in the same product
line effort, the potential for their combination is promising and part of the SEI's future plans

to mature product line technology.

CMU/SEI-2002-TN-007 19

20 CMU/SEI-2002-TN-007

References

[Bachmann 00] Bachmann, F.; Bass, L.; Chastek, G; Donohoe, R; & Peruzzi, F. The
Architecture Based Design Method (CMU/SEI-2000-TR-001,
ADA375851). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2000. <http://www.sei.cmu.edu/publications
/documents/00.reports/00tr001.html>.

[Bergey 01] Bergey, J.; O'Brien, L.; & Smith, D. Options Analysis for Reengineering

(OAR): A Method for Mining Legacy Assets (CMU/SEI-2001-TN-013,
ADA395201). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2001. <http://www.sei.cmu.edu/publications

/documents/01 .reports/01 tnO 13 .html>.

[Clements 01] Clements, P. & Northrop, L. Software Product Lines: Practices and
Patterns. Reading, MA: Addison-Wesley, 2001.

[Kazman 01] Kazman, R.; O'Brien, L.; & Verhoef, C. Architecture Reconstruction
Guidelines (CMU/SEI-2001-TR-026, ADA395198). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2001.
<http://www.sei.cmu.edu/publications/documents/01.reports
/01tr026.html>.

[O'Brien 01] O'Brien, L. & Stoermer, C. "MAP: Mining Architectures for Product Line
Evaluations," 35-44. Proceedings of the Third Working IFIP Conference
on Software Architecture (WICSA1). Amsterdam, Netherlands, August 28-
31, 2001. Los Alamitos, CA: IEEE Computer Society, 2001.

[SEI 02] Software Engineering Institute. 'The Dali Architecture Reconstruction
Workbench" [online], <http://www.sei.cmu.edu/ata/products_services
/dali.html> (2002).

CMU/SEI-2002-TN-007 21

22 CMU/SEI-2002-TN-007

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

AGENCY USE ONLY

(Leave Blank)

REPORT DATE

April 2002

4. TITLE AND SUBTITLE

MAP and OAR Methods: Techniques for Developing Core Assets for Software
Product Lines from Existing Assets

3. REPORT TYPE AND DATES COVERED

Final

FUNDING NUMBERS

F19628-00-C-0003

AUTHOR(S)

Liam O'Brien and Dennis Smith

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

PERFORMING ORGANIZATION

REPORT NUMBER

CMU/SEI-2002-TN-007

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
HanscomAFB,MA01731-2116

10. SPONSORING/MONITORING AGENCY

REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

While it is commonly recognized that legacy assets are, in most cases, an important contributor to the core assets for
software product lines, systematic methods for making decisions on when to incorporate legacy assets (versus building
new assets) have not been available. Two methods developed by the Software Engineering Institute fill this gap: the
Mining Architectures for Product Lines (MAP) method and the Options Analysis for Reengineering (OAR) method.

Both of these methods, which are described in this report, support different aspects of the Product Parts Pattern, which is
applied to develop the core assets for a product line. The MAP method provides a suitability analysis of existing systems'
software architectures as candidates for a product line architecture. After an architecture has been developed or chosen,
the OAR method provides a disciplined approach for making decisions on rehabilitating legacy assets that may be
incorporated into the product line asset base.

This technical note describes both the MAP and OAR methods, the activities that each involves, and examples of
applying them.

14. SUBJECT TERMS

mining, architecture analysis, product lines

15. NUMBER OF PAGES

32

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION OF

THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

